Improvements to Tracking Pedestrians in Video Streams Using a Pre-trained Convolutional Neural Network
نویسنده
چکیده
Target tracking has many applications in various fields. Millions of cameras are being used globally and people are constantly being watched everywhere. These cameras record over 48 hours of videos weekly which are impossible to be monitored manually. Many applications have been presented to improve the performance of pedestrian tracking. However, it still has remained a challenging topic. In this thesis, an automatic method is proposed for multiple pedestrian tracking. State-of-the-art detection has been combined with a tracking algorithm, followed by a novel post stage processing to increase the accuracy. Proposed automatic tracking system was compared with a state-of-the-art tracking algorithm which shows comparable accuracy when used with the original incomplete ground truth data. It is estimated to offer better accuracy with a more accurate ground truth data. The proposed algorithm offers potential improvements in both true positives as well as false negatives ratio when compared with the existing algorithm.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملPedestrians Tracking in a Camera Network
With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...
متن کاملPedestrians Tracking in a Camera Network
With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017